السبت، 10 يناير 2015

Nata3alam.intel

الجمعة، 4 يناير 2013


الطريقة المثلى للبحث العلمي
(مقال للعالم على مشرفة )
( مقتطفات من حديث صحفى للعالم الدكتور/ على مصطفى مشرفة فى مارس 1931)

الطريقة المثلى للبحث العلمى هى التى تؤدى إلى نتيجة، و العلوم النظرية هى موضوع بحثى و تتوقف على الاطلاع، على أن العلوم التجريبية تحتاج إلى أجهزة، و قد عُرف البحث فى العلوم التجريبية بأنه ” تصليح مستمر للجهاز! “.

و أول خطوة واجبة على الباحث هى الاطلاع على كل ما نشر فى الموضوع الذى يريد البحث فيه، و لذا كان من الشاق بل يكاد يكون من المستحيل على المبتدئ فى البحث العلمى أن يعمل بدون إرشاد من أستاذ ملم بتفاصيل و مدى ما نَشر.

الخطوة الثانية: هى أن تجد مسألة تصلح لأن تكون موضوع بحث.

الخطوة الثالثة: هى أن نحل هذه المسألة، و هنا تظهر الميزات الشخصية للباحث و مقدرته على الإبتكار و على الأخص تظهر مقدرته على تلقى الإلهام.

فأنا أعتقد أن الباحث العلمى كالشاعر أو كالمؤلف الموسيقى كثيرًا ما يلهم نتائج أبحاثه، و السيكولوجيون يفسرون الإلهام بهداية العقل الباطن و ما إلى ذلك، و لكن انا أفضل أن أسميه الإلهام.

هناك خطوة رابعة لها أهميتها و هى أن تصوغ نتائج بحثك بحيث تصير قابلة للنشر و هذا مجهود أدبى أكثر منه علمى.

فكثير ما يحدث أن ترسل نتائج بحث للناشر، فتُرفض ثم تُصاغ نفس النتائج فى صيغة أخر فتُقبل، و ربما كانت هذه الصياغة من أصعب الأمور على المبتدئ فهى تتطلب خبرة بنوع الصيغ التى تعوَد أصحاب المجلات و أعضاء الجمعيات اعتبارها مقبولة شكلا، و هذا لا يتأتى إلا بالخبرة.

الطريقة العلمية فى البحث لها أهميتها فى الحياة اليومية، فهى رمز إلى إتساع الصدر لكل رأى، و محاولة الوصول إلى الحقيقة فى ذاتها، و عدم التقيد بالمعتقدات القديمة لقدمها، و لا التعلق بالآراء الحديثة لجدتها. فالتفكير البشرى كالفرد البشرى حى و قابل للتطور، و البحث العلمى هو من أقوى و أقوم سبل التطور.


الجمعة، 23 نوفمبر 2012

كيف تستخدم محركات البحث المتقدمة

شرح لكيفية استخدام بعض محركات البحث و المواقع المتخصصة للبحث عن المعلومات
https://docs.google.com/file/d/0B8IUmwRrx6vhLUlhSi1jelR3bDA/edit

الثلاثاء، 7 أغسطس 2012

تكنولوجيا النانو



ماهو النانوتكنولوجي Nanotechnology??

تطلق كلمة نانو باللغة الإنجليزية على كل ما هو ضئيل الحجم دقيق الجسم.
فالنانومتر يساوي واحد مليار من المتر ويساوي عشر مرات من قطر ذرة الهيدروجين، مع العلم إن قطر شعرة الرأس العادية في المعدل يساوي 80000 نانومتر. وفي هذا المقياس القواعد العادية للفيزياء والكيمياء لا تنطبقان على المادة. على سبيل المثال: خصائص المواد مثل اللون والقوة والصلابة والتفاعل، كما إنه يوجد تفاوت كبير بين Nanoscale وبين The micro .
فمثلاَ Carbon Nanotubes أقوى 100 مرة من الفولاذ ولكنه أيضاَ أخف بست مرات.




ماذا يمكن للنانو تكنولوجي أن يعمل؟؟

النانو تكنولوجي تمكن من امتلاك الإمكانية لزيادة كفاءة استهلاك الطاقة، ويساعد في تنظيف البيئة، ويحل مشاكل الصحة الرئيسية، كما إنه قادر على زيادة الإنتاج التصنيعي بشكل هائل وبتكاليف منخفضة جداَ، وستكون منتجات النانوتكنولوجي أصغر.




*
ماذا يقول الخبراء حول النانو تكنولوجي؟؟

في عام 1999م،الفائز بجائزة نوبل للكيمياء "ريتشارد سمالي Richard Smalley " خاطب لجنة الولايات المتحدة الأمريكية التابعة لمجلس النواب عن علم النانوتكنولوجي تحت موضوع: "تأثير النانو تكنولوجي على الصحة ،الثروة، وحياة الناس" وقال: "سيكون على الأقل مكافئ التأثيرات المشتركة لعلم الإلكترونيات الدقيقة، والتصوير الطبي، والهندسة بمساعدة الحاسوب وتكوين مركبات كيميائية اصطناعية متطورة خلال هذا القرن
تكنولوجيا النانو تغيير حياة الإنسان نحو الأفضل 


بدأ مصطلح (تقنية النانو) ينتشر، في مجال الصناعات الإلكترونية، المتصلة بالمعلوماتية. فلو تفحصنا البطاقات المستخدمة في الحواسيب اليوم، وخاصة الحواسيب المحمولة لوجدت أنها مضغوطة إلى درجة كبيرة، فالبطاقة التي لا يزيد سمكها على بضعة ملليمترات، تتكون في الحقيقة من خمس طبقات، أو لنقل رقاقات مضغوطة مع بعضها. 
كما أننا لو تفحصنا الكابلات والمكثفات التي كان وزنها يقدر بالكيلوجرام، لوجدنا أن وزنها لا يتجاوز أجزاء الميللي جرام. فقد تضاءل الحجم، وتضاعفت القدرة وكل ذلك بفضل اختزال سُمك الكابلات وضغط حجم المكثفات والدارات، مما قصّر المسافات، التي تقطعها الإلكترونات، وأكسب الحواسيب، سرعة أكبر في تنفيذ العمليات.

تشير عبارة تكنولوجية النانو إلى التفاعلات بين المكونات الخلوية والجزيئية والمواد المهندسة وهي عادة مجموعات من الذرات والجزيئات والأجزاء الجزيئية عن المستوى البدائي الأول للبيولوجيا. وتكون هذه الأشياء الدقيقة بشكل عام ذات أبعاد تقل عن 100 نانومتر ويمكن أن تكون مفيدة بحد ذاتها أو كجزء من أجهزة أكبر تحتوي على أشياء دقيقة متعددة. 

وعند المستوى الدقيق (النانو)، نجد أن الخواص الطبيعية والكيميائية والبيولوجية تختلف جوهرياً، وغالبا بشكل غير متوقع عن تلك المواد الكبيرة الموازية لها بسبب أن خواص الكمية الميكانيكية للتفاعلات الذرية يتم التأثير عليها بواسطة التغيرات في المواد على المستوى الدقيق. وفي الواقع أنه من خلال تصنيع أجهزة طبقا لمعيار النانومتر من الممكن السيطرة على الخصائص الجوهرية للمواد بما في ذلك درجة الانصهار والخواص المغنطيسية وحتى اللون بدون تغير التركيب الكيميائي لها. 

من جهة أخرى فإن هناك العديد من الاستخدامات التي تخدم مجال الصناعات الإلكترونية مثل مجال صناعة الترانزستورات حيث بدأ مصنعو الترانزستور في الوصول إلى الحدود الطبيعية لمدى صغر رقائق السيليكون والنحاس التي تصنع منها مثل هذه المواد، وقد ساعدت هذه التقنية هؤلاء العلماء للوصول إلى طريقة مبتكرة لتصنيع ترانزستورات أصغر بكثير من الرقائق الحالية ليس من خلال تقليل حجم الرقائق الحالية ولكن من خلال تصنيعها من الجزيئات الفردية. 
فقد ساعدت الأبحاث التي تم القيام بها بواسطة أربعة علماء يعملون في مركز الأبحاث التابع لوكالة الفضاء الأمريكية (ناسا) على تمهيد الطريق لبناء ترانزستورات من الأنابيب الكربونية البالغة الصغر التي تم صنعها من طبقة واحدة من الذرات الكربونية يتم قياسها من خلال النانومتر (واحد نانومتر يعادل واحد على بليون من المتر). 

واستنتج العلماء إمكانية تصنيع الترانزستورات من الأنابيب البالغة الصغر، وشملت اكتشافاتهم الغوارتيمية لتشكيل هذه التطبيقات، والتقنيات الجديدة لإرسال المعلومات، والمكونات الكربونية التي تعمل مثل المحطات الطرفية لمفتاح تشغيل الترانزستور ووسائل استخدام سلاسل أنابيب النانو بالأنظمة الإلكترونية. 

البديل الكربوني ومن إحدى المعايير المعروفة لتكنولوجية المعلومات هو قانون مور، الذي قام المؤسس الشريك في شركة انتل (جورودون مور) بوضعه، والذي ينص على أن عدد الترانزستورات المتواجدة في بوصة مربعة واحدة بالدوائر المتكاملة سوف يتضاعف كل 18 شهر، إلا إن مصنعي الرقائق من المتوقع أن يصلوا قريبا إلى الحدود التقليدية للرقائق. 
هذا وتتطلب تقنية التطوير الحالية لأشباه الموصلات تخفيض حجم ترانزستورات السيلكون أو ببساطة الإسراع في نظم الإرسال الحالية. 
ومن غير المرجح أن يعمل هذا التوجه من الأعلى إلى الأسفل نحو نمنمة الترانزستورات والليزر ذي الصمام الثنائي وهو مكونات البناء الجوهرية لنظم الكمبيوتر والاتصالات أن يتمكن من الوفاء بالطلب المتزايد على المعالجة والبث البالغ السرعة للمعلومات. حتى وإن تم تصنيع الرقائق بحجم صغير بشكل كاف، فإن هذه الدوائر الموضوعة بشكل مكثف بجانب بعضها البعض سوف تنبعث عنها حرارة شديدة يصعب تبريدها بشكل فعال. 

وإذا استمر تخفيض حجم الرقائق، يتعين العثور على طريقة جديدة لتصنيعها، وبما أن الأنابيب الدقيقة تم اكتشافها في عام 1991، فقد قدمت نفسها كمرشح للخطوة القادمة في النمنمة أو التصغير الكبير في الحجم، وقد اهتم علماء الطبيعة بهذه الأنابيب بسبب خصائصها الإلكترونية حيث يمكنها العمل إما كمعادن أو أشباه موصلات. 
وبصفتها معادن، يمكنها توصيل موجات بالغة الارتفاع بدون الانحلال والسخونة التي لا تزال تشكل مشاكل مع الأسلاك النحاسية، وبصفتها أشباه موصلات، يمكن استخدامها في الترانزستورات الدقيقة العالية الأداء. 

وعند استكشاف البدائل للطريقة التقليدية من أعلى إلى أسفل لتخفيض حجم ترانزستورات السيلكون، أدرك العلماء أن الأجهزة التي تعتمد على الأنابيب الدقيقة المنمنمة يمكن بناؤها من اسفل إلى أعلى من خلال الدقة الذرية. 
تعتبر الأجهزة الناتجة عن ذلك بواسطة العلماء الآخرين نوعا جديدا من الترانزستورات. فترانزستور الأنابيب المصغرة تقل بمقدار 60.000 مرة عن الترانزستور التقليدي. 
وقال سريفستافا الذي قام بالتركيز على جعل الأنابيب الدقيقة تعمل مثل مفاتيح التشغيل (يمكنك وضع المزيد من الترانزستورات في مساحة صغيرة)، ويضيف إن زيادة كثافة الترانزستورات تعمل في العادة على زيادة كثافة الطاقة التي تقوم ببث حرارة كبيرة تجعل الجهاز يحرق نفسه، إلا أن الهيكل الكربوني يحتاج لطاقة أقل ولذلك يمكن تشغيل الترانزيستور بحرارة وطاقة اقل. 


ومن ناحية أخرى قام العلماء بدراسة مواد تكنولوجية التصغير المحتملة، نظرياً أو من خلال محاكاة الكمبيوتر، حيث اكتشفوا مميزات ومساوئ بناء مفاتيح التشغيل والترانزستورات المنمنمة باستخدام أنابيب كربونية دقيقة متنوعة الارتباط، وسلاسل ذرية مصنوعة من الذرات الفردية أو حتى جزيئات DNA إلا أن مساهمتهم الرئيسية تمثلت في تركيزهم على بناء الأجهزة الدقيقة، وقالوا انه إذا تعين على المطورين بناء أجهزة دقيقة من الأسفل إلى الأعلى، فإنهم سوف يكونون بحاجة لتوجهات جديدة تماما نحو التطوير. 

وفيما يلي بعض استنتاجات كل باحث من الباحثين الأربعة: 
المطورون بحاجة لطريقة لصياغة شكل الأجهزة الدقيقة، وذلك لأن الطرق التقليدية لا يمكنها أن تصف كيفية تدفق التيار الكهربائي من خلال الجهاز الدقيق، وقام فريق الباحث انانترام بوضع غوارتيمية مبتكرة. 
ركزت أبحاث الباحث نينج بشكل رئيسي على بث المعلومات حيث اكتشف أن نظام البث يمكن أن يعتمد على تسخين الإلكترونات في سلك دقيق لأشباه الموصلات بدلا عن تشغيل وإغلاق التيار الكهربائي. 
بعد دراسة تكوين واستقرار وهيكل سلوك رد الفعل الإلكتروني للوصلات المختلفة في الأنابيب الدقيقة، قام سيرفستافا بابتكار سلسلة من الهياكل التي تعتمد تماما على الكربون والتي يمكن أن تؤدي كافة وظائف الأجهزة الثلاثية الطرق اللازمة لدوائر الكمبيوتر. قام ياماد بابتكار طريقة لصنع سلاسل ذرية لأشباه الموصلات خاصة بالتطبيقات الإلكترونية. 
تكنولوجيا النانو والكمبيوتر 

تتلخص فكرة استخدام تقنية النانو في إعادة ترتيب الذرات التي تتكون منها المواد في وضعها الصحيح، وكلما تغير الترتيب الذري للمادة كلما تغير الناتج منها إلى حد كبير. وبمعنى آخر فإنه يتم تصنيع المنتجات المصنعة من الذرات، وتعتمد خصائص هذه المنتجات على كيفية ترتيب هذه الذرات، فإذا قمنا بإعادة ترتيب الذرات في الفحم يمكننا الحصول على الماس، أما إذا قمنا بإعادة ترتيب الذرات في الرمل وأضفنا بعض العناصر القليلة يمكننا تصنيع رقائق الكمبيوتر. وإذا قمنا بإعادة ترتيب الذرات في الطين والماء والهواء يمكننا الحصول على البطاطس. 
وما يعكف عليه العلم الآن أن يغير طريقة الترتيب بناء على النانو، من مادة إلى أخرى، وبحل هذا اللغز فإن ما كان يحلم به العلماء قبل قرون بتحويل المعادن الرخيصة إلى ذهب سيكون ممكنا، لكن الواقع أن الذهب سيفقد قيمته!!. 

وتعتبر طرق التصنيع اليوم غير متقنة على مستوى الجزيئات. فالصب والطحن والجلخ وحتى الطباعة على الحجر تقوم بنقل الذرات في مجموعات ضخمة، مثل محاولة تصنيع أشياء من مكعبات الليجو أثناء ارتداء قفازات الملاكمة، وفي المستقبل، سوف تسمح لنا تكنولوجية التصغير أن نقوم بالتخلص من قفازات الملاكمة وان تقوم بترتيب مكونات البناء الجوهرية للطبيعة بسهولة وبدون تكلفة وفي معظم الأحيان حسبما تسمح به قوانين الطبيعة، وسوف يكون هذا الأمر حيوياً وهاماً إذا تعين علينا الاستمرار في ثورة مكونات الكمبيوتر لتمتد بعد القرن القادم، كما سوف تسمح بتصنيع جيل جديد تماما من المنتجات الأنظف والأقوى والأخف وزنا بل والأكثر دقة. ومن الجدير بالذكر أن كلمة (تكنولوجية التصغير) أو (نانو تكنولوجي) أصبحت شائعة إلى حد كبير ويتم استخدامها لوصف العديد من أنواع الأبحاث حيث تكون أبعاد المادة المصنعة اقل من 1.000 نانومتر، على سبيل المثال التحسينات المستمرة في الطباعة على الحجر نتج عنها عرض خطوط أقل من ميكرون واحد. 

فالكثير من توجهات التحسن في قدرة وحدات ومكونات الكمبيوتر ظلت ثابتة خلال الـ 50 سنة الأخيرة وهناك اعتقاد شائع أن هذه التوجهات سوف تستمر على الأقل لعدة سنوات، وبعد ذلك سوف تصل الطباعة الحجرية إلى حدودها في ذلك الوقت. 

فإذا تعين علينا الاستمرار في هذه التوجهات يجب أن نقوم بتطوير تكنولوجية تصنيع جيدة تسمح لنا ببناء أنظمة كمبيوتر بشكل غير مكلف بواسطة كميات من العناصر المنطقية التي تكون جزيئية في كل من الحجم والدقة، ومرتبطة ببعضها البعض من خلال أنماط معقدة وبالغة الحساسية. وسوف تسمح تكنولوجية التصغير بالقيام بذلك. ويمكننا استخدام مصطلح (تكنولوجية التصغير الجزيئية) أو (التصنيع الجزيئي) بدلا عن (النانو تكنولوجي) ولكن أيًّا كان المصطلح الذي نقوم باستخدامه، فإنه يتعين عليه أن يسمح لنا بان نقوم بشكل جوهري بوضع كل ذرة في المكان الصحيح، وان نجعل كل هيكل متناسق مع قوانين الطبيعة التي يمكن أن نحددها بالتفاصيل الجزيئية، مع عدم تجاوز تكاليف التصنيع بشكل بالغ لتكلفة المواد الخام والطاقة المطلوبة. 


ومن الواضح أننا سوف نكون سعداء بأي طريقة تحقق بشكل متزامن أول ثلاثة أهداف، إلا أنه يبدو انه من الصعوبة استخدام بعض أنماط التركيب المكاني (أي وضع أجزاء الجزيئات الصحيحة في المكان الصحيح) وبعض أشكال النسخ المتطابقة الذاتية (لتقليل التكلفة). وتنطوي الحاجة للحصول على التجميع المكاني على الاهتمام بالآليات الجزيئية (أي الأجهزة الآلية التي تكون جزيئيه من حيث حجمها ودقتها). ومن المحتمل أن تقوم هذه الآليات المكانية على النطاق الجزيئي بإعادة تجميع النسخ البالغة الصغر من الأجزاء المقابلة لها الميكروسكوبية. ويتم استخدام التجميع المكاني بشكل متكرر في التصنيع الميكروسكوبي اليوم مع ربط كلتا يديك خلف ظهرك! ففكرة السيطرة على وضع الذرات الفردية والجزيئات لا تزال حديثة، إلا انه يتعين علينا أن نستخدم على المستوى الجزيئي المفهوم الذي بين فعاليته على المستوى الميكروسكوبي، ونجعل الأجزاء تذهب إلى المكان الذي نريد منها الذهاب إليه. 

وينجم عن شرط التكلفة المنخفضة اهتمام بأنظمة تصنيع النسخ المتطابقة ذاتياً، حيث يمكن لهذه النظم القيام بعمل نسخ عن نفسها وتصنيع منتجات مفيدة. فإذا أمكننا تصميم وبناء هذا النظام، فإن تكلفة تصنيع هذا النظام وتكاليف تصنيع الأنظمة المشابهة والمنتجات التي تعمل على إنتاجها (بافتراض قدرتها على إنتاج نسخ عن نفسها في بيئة غير مكلفة بشكل معقول) سوف تكون منخفضة للغاية. 


تكنولوجية IBM للتصغير 

تهدف أبحاث شركة IBM في مجال تكنولوجية التصغير إلى تصميم مكونات وهياكل ذرية جديدة على المستوى الجزيئي لتحسين تكنولوجيات المعلومات، بالإضافة إلى اكتشاف وفهم أساسها العلمي. ومن خلال ريادة تطوير تكنولوجية التصغير أو النانو، استطاع علماء شركة IBM وضع دراسات لهذه التكنولوجيات على مستوى النانو أو التكنولوجية القزمية. وعلى وجه التحديد، فإن الأنابيب الكربونية المصغرة ومسبار الفحص الذي تم إنتاجه من ميكروسكوب الطاقة الذرية يقدم وعداً بتمكين تحسين الدوائر ووسائل تخزين البيانات. 

ويؤدي البحث في جزيئات النانو إلى تطبيقات في الطب الطبيعي بالإضافة إلى التخزين على القرص الصلب للكمبيوتر. 
ومما يذكر أن الأبحاث في مجال تخزين المعلومات بواسطة تكنولوجية النانو الميكانيكية، مثل مشروع شركة IBM الذي يطلق عليه MILLIPEDE سوف تستمر في زيادة احتمالات زيادة كثافة التخزين الهوائي.


علم لا يزال في المهد 

وتستخدم تقنية (النانو) الخصائص الفيزيائية المعروفة للذرات والجزيئات لصناعة أجهزة ومعدات جديدة ذات سمات غير عادية وعند إحكام قبضة العلماء على جوانب هذا العلم الخارق يصبح في حكم المؤكد تحقيق إنجازات تفوق ما حققته البشرية منذ ظهورها على الأرض قبل ملايين السنين. ويقول الخبراء أن تقنية النانو تعد البشرية بثورة علمية هائلة قد تتغير معها ملامح الحياة في جميع النواحي الصحية والتعليمية والمالية.. الخ، بما يجعل الحياة أفضل، ويساعد في التخلص من الأمراض المستعصية التي يعاني منها الناس على مدى قرون طويلة. 
كذلك ستعمل النانو على تحسين أساليب الإنتاج الزراعي والصناعي وتخفض التكاليف على نحو غير مسبوق مما يعني مزيدا من الراحة ونهاية المتاعب لإنسان العصر. 

هذا وتشهد المختبرات في الوقت الراهن سباقاً محموماً بين الباحثين يهدف لوضع مخطط تفصيلي عام يوضح وظائف (طرق عمل البروتينات في إطارها الكيميائي فيما يهتم الفيزيائيون بدراسة هياكل هذه المواد وخصائصها الوظيفية وذلك بهدف تركيب البروتينات بنسخ صناعة ذات خصائص جديدة وبجزيئات أكبر وأكثر تعقيداً ويحصر الباحثون مهامهم في الوقت الحالي في تصميم روبوت ضئيل الحجم قادر على تحريك الجزيئات وذلك حتى يكون ممكنا لها مضاعفة ذاتها بشكل آلي دون تدخل العوامل الخارجية. وفيما يتعلق بجسم الإنسان يتوقع أن تعمل تقنية النانو على مكافحة أمراض الجسم وإعادة إنتاج الخلايا الميتة ومضاعفتها والقيام بدور الشرطي في الجسم لحماية الأجهزة لتدعيم جهاز المناعة لدى الإنسان. 

تكنولوجيا المنمنمات. ثورة صناعية ثانية 


لقد كان هناك تساؤل يثار منذ فترة بعيدة عن التطورات التي يمكن أن تحدث في مجال التصنيع إذا ما تمكن الإنسان من السيطرة على الذرة بشكل جيد والاستفادة منها كما ينبغي عن طريق تحريكها؟ وكان أول من أثار هذا التساؤل عالم الفيزياء ريتشارد فينمان حيث تساءل عن (ماذا سيحدث إذا أصبح بمقدور العلماء ترتيب الذرات بالطريقة التي يريدونها؟). 

جاء ذلك في إطار إعلانه عن ظهور تقنية حديثة في مهدها الأول في ذلك الوقت، سميت بالتقنية النانوية أو النانوتكنولوجيا (Nanotechnology) . ولقد مضى على إعلان (فينمان) ما يربو على أربعة عقود من الزمان حتى الآن، وبالرغم من أن التطور في هذه التقنية قد تأخر نسبياً بالمقارنة بالتقدم المطرد في علوم الكمبيوتر مثلا، لكن هذه التقنية عاودت الظهور بكثافة عالية مؤخراً، على هيئة مبتكرات وتقارير علمية في كثير من المطبوعات العلمية العالمية. 

لكن هناك ثمة اتفاقا على أن عام 1990م هو البداية الحقيقية لعصر التقنية النانوية، ففي ذلك العام، تمكن الباحثون في مختبر فرعي لإحدى شركات الإلكترونات العالمية العملاقة من صنع أصغر إعلان في العالم، حيث استخدموا 35 ذرة من عنصر الزينون في كتابة اسم الشركة ذي الحروف الثلاثة على واجهة مقر فرعها بالعاصمة السويسرية! ويتنبأ العلماء بمستقبل واعد لهذه التقنية، التي باتت الدول الصناعية في أوروبا واليابان والولايات المتحدة تضخ إليها ملايين الدولارات من أجل تطويرها. 

والولايات المتحدة وحدها التزمت هذا العام بتخصيص أكثر من 497 مليون دولار للتقنية النانوية واستخداماتها، كما أن شركات الكمبيوتر الكبرى المهتمة بالبحث العلمي، مثل (هيوليد باكارد) و(آي بي إم) و(ثري إم) تقوم بتخصيص ما يصل إلى ثلث المبالغ المخصصة للبحوث العلمية على التقنية النانوية. 

وقد ظهرت عدة تقارير علمية دفعة واحدة، واحتلت أبحاث النانوتكنولوجي باباً كاملاً في مجلة العلم الأمريكية (ساينس) في تشرين الثاني نوفمبرِ (2000م)، ثم تلاها عدة تقارير في مطبوعات علمية أخرى كمجلة الطبيعة (نيتشر)

الطب والنانو تكنولوجيا

تُقاس الخلايا بالميكرونات، ويساوي الميكرون الواحد مليون جزء من المتر، وتقاس الذرات بالنانومتر الذي يعادل الواحد منه مليار جزء من 
المتر أو واحدا على 80 ألف جزء من عرض شعرة الإنسان. وترمي النانو-تكنولوجيا إلى بناء وتسخير أشياء على المستوى الذري (من حيث الحجم). وكما يعبر الدكتور جاك جودي أستاذ الهندسة الكهربائية بجامعة كاليفورنيا، لوس أنجلوس University of California, Los Angeles، هناك تصوران لنمو النانو-تكنولوجيا؛ أولاهما ما يسميه بتكنولوجيا استقطار الثمالة، حيث يسعى مهندسو الجزيئات إلى تشكيل بنيات من النانو- تكنولوجيا تم إنتاجها الواحدة بعد الأخرى من وحدات جزيئية. أما التصور الثاني فيقوم على تصغير التكنولوجيات الموجودة إلى الحد الأقصى. وقد نشأ النوع الأخير من علوم وتطبيقات الإلكترونيات الدقيقة، وتعرف مخترعاته باسم الميمات MEMS.

يقول جودي: "ظلت تكنولوجيا التصنيع المستخدمة في صنع الميمات تتطور باستمرار بفضل صناعة الدوائر الكهربية المتناهية الصغر. ولقد أصبح من الممكن الآن إنتاج بنيات كهربية أو ميكانيكية أو سائلة تتميز بدقة الحجم بصورة تكاد تكون متناهية، إذ ننتج من الزجاج أو السيلكون وحدات ومعدات أصغر حجما من الميكرون". وهذا يعني أن الآلات المعقدة يجرى استبدالها بأخرى أصغر فأصغر حجما.

في الوقت الحاضر يعمل الدكتور جودي في مجالٍ من التكنولوجيا لعزل الخلايا ومراقبة وظائفها الفسيولوجية، ويقول عن مشروعه: "إن تعريض الخلية لمؤثرات الإشعاع أو درجة الحرارة أو معدلات تدفق السوائل أو الكيماويات الأخرى سيغيّر البيئة الخلوية الخارجية. وحاليا يتم كل ذلك ولكن بوتائر بطيئة جدا. إلا أن التكنولوجيا التي نعكف على تطويرها تسمح باستخدام عدد كبير من الخلايا في وقت واحد، وهذا بدوره يسمح للعلماء بدراسة سلوكيات الخلية بدقة أكبر مما كان متوفرا في الماضي. فقد كانوا آنذاك يستطيعون مراقبة ما يحدث خارج الخلية دون أن تكون لديهم أية فكرة عما يحدث بداخلها".

الأداة المفضلة لدى جودي هي الرقاقة البيولوجية وهي قطعة صغيرة مربّعة من الزجاج مساحتها سنتيمتر في سنتيمتر، وبها قنوات صغيرة تستطيع أن تعزل الخليّة والمنافذ المتصلة بالخليّة. ويستطيع العالم أن يراقب ما يحدث للخلية عن طريق المجهر. ويخبرنا جودي أن شركات تصنيع الأدوية تبدي اهتماما كبيرا بهذه التكنولوجيا التي يعمل على تطويرها لأنها ستسمح لتلك الشركات بتطوير مكتشفاتها في علم وصناعة الدواء.

يقول توماس ويبستر، المهندس البيولوجي والأستاذ المساعد في جامعة بردو Perdue University: "إن إيصال الدواء إلى الجسم هو واحد من أول تطبيقات النانو-تكنولوجيا المرشحة للاستخدام. وعن طريقها يمكن أن ندخل إلى الخلية جرعة دوائية يقل حجمها عن 100 نانو متر دون أن تلفت النظر". والواقع أنه يمكن إعطاء الأدوية للمرضى على هيئة أقراص يقاس حجمها بالميكرون تقوم بإطلاق الدواء على الخلايا المستهدفة. والنظرية المعتمدة هنا هي أن فاعلية الدواء تزداد إذا كانت كمياته متناهية الصغر بهذا الشكل. وكلما تضاءلت الجرعة الدوائية كلما قل ضررها على المريض لأنها لن تستهدف حينها إلا الخلايا المسببة للمرض أو للعدوى.

ويبحث ويبستر أيضا في وسائل استخدام المواد النانوية لترميم وإصلاح الأنسجة الطبيعية، إذ برهنت الوسائل التقليدية مثل زرع العظام والأوعية الدموية على عجزها عن توفير النعومة واستواء السطح الذي يتوافر باستخدام المواد النانوية. ويقول وبستر: "لقد وجدنا أن البيئات النانوية تساعد الجسم على إعادة إنتاج نفسه بصورة أفضل سواء في مجال العظام أو الأوعية الدموية أو الغضروفيات وخلايا المثانة. ولقد جرى إثبات كل ذلك عمليا. ومن المتوقع أن تتوسع استخداماتها في الجسم البشري في وقت قريب نسبيا". كما أنه من المتوقع أن تبقى المواد الجديدة عاملة داخل الجسم لمدة أطول من مدة الـ15 عاما المتاحة حاليا لمعظم أشكال استزراع الأعضاء التقليدية.

تهتم جنيفر ويست الأستاذة المساعدة لقسم الهندسة البيولوجية بجامعة رايس Rice University بمدينة هيوستن بولاية تكساس والمختصة بأبحاث علاج السرطان وإطالة عمر المصابين به. وتجري أبحاثها على مادة تعرف باسم القشور النانوية تتميز بقدرتها على التشبّع بالضوء من الدرجة فوق الأشعة الحمراء، والمعروف بقدرته على التغلغل في الجسم إلى أعماق كبيرة. وتشرح جنيفر العملية قائلة: "نقوم بحقن القشور النانوية بشكل منتظم ونتركها تتحرك خلال الجسم لتصل إلى الخلايا السرطانية وتلتحم بها، ثم نقوم بتسليط أشعة قريبة من الأشعة فوق الحمراء عبر الأنسجة، وبسب ذلك ترتفع حرارة القشور النانوية. وتخلق فتحات مسامية في غشاء الخلايا السرطانية فتلتحم بها وتسبب موتها".

وتضيف جنيفر ويست: "إن ذلك تطبيق مدهش للنانو- تكنولوجيا. وقد رأينا حالات شفاء كامل من الأورام في الفئران والحيوانات المعملية الأخرى التي كنا نجري تجاربنا عليها، ومنها ما عاش لشهور وشهور دون أن تعود الأعراض التي كان يعاني منها إلى الظهور".

يتوقع العلماء أن تصبح النانو-تكنولوجيا في المستقبل القريب جزءا أصيلا من الممارسة الطبية اليومية خاصة في مجال توصيل الدواء. ومع ذلك نجد جنيفر ويست تحذر من أن ذلك لن يحصل في القريب العاجل إذ تقول: "لا زلنا على مبعدة عدة عقود من تلك الآلات الدقيقة التي تسبح عبر أجسامنا لتقاتل البكتيريا والفيروسات وتحول كل البشر إلى مخلوقات صحيحة معافاة".

فيروسات في حجم الديناصورات!

قام العلماء بتكبير صور الدقائق والجسيمات والكائنات المتناهية في الصغر كالبكتيريا والفيروسات إلى أحجام تصل لحجم ملعب كرة القدم. وتمكنوا عن طريق تقنيات متقدمة؛ من رؤية المناظر بطريقة طبيعية ثلاثية الأبعاد والتفاعل معها، بل لقد قام أحدهم بوخز بعض البكتريا الموحلة في بعض الأوساط الغذائية ووخز أنابيب الكربون التي لا يتعدى حجمها النانومتر (النانو = جزء من البليون من المتر).

وأطلق على الآلة الجديدة " نانومانيبيولاتور"nanoManipulator)) أو المعالج النانومتري، ومكنت هذه الآلة الحديثة العلماء من السباحة في عالم متناه في الصغر، عن طريق ارتداء منظار خاص. وتقبع النسخة الأكثر تقدّما من النانومانيبيولاتور في قسم الفيزياء بجامعة نورث كارولينا في "تشابل هل". ولقد تم استخدام أحدث التقنيات المتقدمة في العالم اليوم لابتكار هذا الجهاز(أحدث تقنيات الحقيقة الافتراضيّة وأحدث مسبر (مجس) حسيّ دّقيق، الذي سمح للعلماء أن يلمسوا ويشعروا بجزيئات متناهية الصغر)

يقول "إيرك هينديرسون" الأستاذ في جامعة ولاية إيوا بعد زيارته لحرم الجامعة لاختبار جهاز "النانومانيبيولاتور": هذا الجهاز يشعرك بأنك تطير بين الجزيئات، ويجعل الكروموزومات تبدو هائلة مثل حجم سلسلة جبال. ويقول "ريتشارد سوبرفاين" أستاذ الفيزياء في جامعة نورث كارولينا، الذي أشرف على الفريق المطوّر لجهاز "النانومانيبيولاتور": إنّ لديه غرضا عمليّا أهم للباحثين وهو يتمثل في توفير الوقت والجهد والمال؛ حيث يمكنهم هذا الجهاز من عمل تجربة ما؛ يلاحظون ويلمسون نتائجها فورًا ويشاهدون مفرداتها على الطبيعة في ثوان معدودة.

كيف تطوّر النانومانيبيولاتور؟!

النانومانيبيولاتور" هو ثمرة تعاون بين باحثي العلوم الطّبيعيّة ومجموعة من خبراء علم الكمبيوتر. ولقد بدأ العمل الفعلي لإنتاجه في نهايات الثمانينيات، عندما بدأ العلماء العمل على تطوير نوع جديد لمجهر سُمي "بالمجهر المسبر الماسح". وبدلاً من استعمال أمواج الضوء أو الإلكترونات لفحص عيّنة ما وتكوين صورة محسوسة لها، يقوم هذا المجهر بتحسس العيّنة مباشرةً عن طريق مسبرّ متناه في الصغر؛ يتمثل في نقطة لا يتعدى حجمها حجم الجزيء. ويمسح هذا المجس سطح العيّنة برقّة؛ مثلما يقرأ العميان بأصابعهم على طريقة بريل. وتظهر النتيجة في الحال على هيئة صورة مجسمة ثلاثية الأبعاد يمكن تكبيرها إلى أحجام تزيد عن المليون ضعف؛ بالرغم من أنها لا يزيد حجمها الأصلي عن بضع من النانومترات.

بدأ "روبينيت وارين" باحث علم الكمبيوتر في جامعة نورث كارولينا العمل الفعلي في هذا المشروع في أوائل التسعينيات عندما كان يبحث عن طريقة لاستعمال تكنولوجيا الواقع الافتراضيVirtual Reality) )، وقد كلّف "روبينيت" طالبا للدّراسات العليا بالعمل على إيجاد وسيلة تطبيقية لهذا المجال. ثم تطور المشروع ليصبح مشروعا مشتركا بين عدة أقسام علمية في جامعة نورث كارولينا.

يتضمن النانومانيبيولاتور آلة مشيرة تبدو مثل عصا قيادة السيارات، وتتصل هذه الآلة بكمبيوتر شخصيّ مزود ببطاقة رسم بيانيّ متقدمة للغاية، تقوم بتحويل بيانات المجهر لتعرضها على هيئة صورة ثلاثية الأبعاد ذات ألوان متعدّدة، ويمكن هذا المجس الدقيق العلماء من أن يلمسوا ويشعروا بمعالم الأشياء الصغيرة التي يدرسونها، ولقد شعر العلماء بالحوافّ الصّغيرة والفجوات المتواجدة في جزيئات البروتين، وبلزوجة بعض أنواع البكتريا الممرضة. كما استطاع الفيزيائيّون دراسة أنابيب الكربون الدقيقة أو النانوتيوب nanotubes) ) التي قد تشكّل أجزاء للآلات الإلكترونيّة الصغيرة والماكينات يومًا ما. ولقد شاهد الكيمائيون شجار الذّرّات داخل أنابيب الكربون الدقيقة، مما حدا بهم بالتفكير في عمل محركات صغيرة عن طريق حث هذه الأنابيب لتتحرك مثل أسنان التّرس.

ويقول "سين واشبرن" أستاذ فيزياء وعلوم الموادّ في جامعة نورث كارولينا: إنّ فريق النانومانيبيولاتور قد تعلّم كثيرا من القواعد الفيزيائية التي تحكم حركة الجسيمات الدقيقة، على سبيل المثال الجزيئات الصغيرة لا تتأثر بالجاذبيّة، ولكنهاّ تتأثر بشدة بالقوانين الفيزيائية الأخرى مثل اللّزوجة.

تكنولوجية النانو وعلاج السرطان 

يمكن للأجهزة الدقيقة أن تعمل بشكل جذري على تغيير علاج السرطان إلى الأفضل وان تزيد بشكل كبير من عدد العناصر العلاجية، وذلك لأن الوسائل الدقيقة، على سبيل المثال يمكن أن تعمل كأدوات مصممة حسب الطلب تهدف لتوصيل الدواء وقادرة على وضع كميات كبيرة من العناصر الكيميائية العلاجية أو الجينات العلاجية داخل الخلايا السرطانية مع تجنب الخلايا السليمة وسوف يعمل ذلك بشكل كبير من تخفيض أو التخلص من المضاعفات الجانبية السلبية التي تصاحب معظم طرق العلاج الحالية للسرطان. 

وهناك مثال جيد من العالم البيولوجي وهي كبسولة الفيروس، المصنعة من عدد محدد من البروتينات، كل منها له خصائص كيميائية محددة تعمل معا على إنشاء وسيلة متعددة الوظائف دقيقة لتوصيل المواد الجينية. سوف تعمل تكنولوجية التصغير على تغيير أساس تشخيص وعلاج والوقاية من السرطان، ومن خلال الوسائل الدقيقة المبتكرة القادرة على القيام بوظائف طبية بما في ذلك الكشف عن السرطان في مراحله المبكرة وتحديد موقعه في الجسم وتوصيل الأدوية المضادة للسرطان إلى الخلايا السرطانية وتحديد إذا كانت هذه الأدوية تقتل الخلايا السرطانية أم لا. 

تطوير خطة تكنولوجية التصغير لمعالجة السرطان 

تقوم خطة تكنولوجية التصغير لمعالجة السرطان على تزويد دعم مهم في هذا المجال من خلال مشاريع داخلية وخارجية ومعمل لتوحيد مقاييس التكنولوجية الدقيقة الذي سوف يعمل على تطوير معايير هامة لأجهزة ووسائل التكنولوجية الدقيقة التي سوف تمكن الباحثين من تطوير واجهات عمل متعددة الوظائف وتقوم بمهام متعددة. 

قنابل نانوية لتفجير الخلايا السرطانية 

طور علماء من مركز السرطان (ميموريان كيتيرنج) الأمريكي قنابل مجهرية ذكية تخترق الخلايا السرطانية، وتفجرها من الداخل. استخدم العلماء بقيادة (ديفيد شينبيرج) التقنية النانوية في إنتاج القنابل المنمنمة، ومن ثَم استخدامها في قتل الخلايا السرطانية في فئران المختبر. وعمل العلماء على تحرير ذرات مشعة من مادة (أكتينيوم 225) ترتبط بنوع من الأجسام المضادة من (قفص جزيئي)، ونجحت هذه الذرات في اختراق الخلايا السرطانية ومن ثم في قتلها. 

وأكد (شينبيرج) أن فريق العلماء توصل إلى طريقة فعالة لربط الذرات بالأجسام المضادة ومن ثَم إطلاقها ضد الخلايا السرطانية. واستطاعت الفئران المصابة بالسرطان أن تعيش 300 يوم بعد هذا العلاج، في حين لم تعِش الفئران التي لم تتلقَّ العلاج أكثر من 43 يوماً. 

وتوجد في كل (قنبلة) خلية ذات عناصر إشعاعية قادرة على إطلاق ثلاث جزيئات عند اضمحلالها. وكل جزيئة من هذه الجزيئات تطلق ذرة (ألفا) ذات الطاقة العالية، لذلك فإن وجودها داخل الخلية السرطانية يقلص من احتمال قيام ذرات ألفا بقتل الخلايا السليمة. 

وتم تجريب الطريقة على خلايا مستنبَتة مختبرياً من مختلف الأنواع السرطانية التي تصيب الإنسان، مثل الأورام السرطانية في الثدي والبروستاتة وسرطان الدم. وستجرَّب الطريقة أولا في مكافحة سرطان الدم بعد أن تأكد العلماء أن التجارب على الفئران سارت دون ظهور أعراض جانبية. 

(النانوبيوتيك).. أحدث بديل للمضاد الحيوي 

توصل العلماء الأمريكيون إلى طريقة علمية جديدة لمكافحة البكتيريا القاتلة التي طورت مقاومة ضد المضادات الحيوية، وللبكتريا القاتلة الفتاكة التي طورت مناعة ذاتية للمضادات الحيوية، والبكتريا المحورة وراثيا المستخدمة عادة في الحرب البيولوجية. ويعتبر هذا النوع الجديد من الأدوية الذكية بديلا غير مسبوق للمضادات الحيوية، ويساعد على حل مشكلة مقاومة هذه الأنواع البكتيرية للأدوية. 

ومن المعروف أن الجراثيم نشطت المقاومة للأدوية؛ بسبب إفراط المرضى في استخدام المضادات الحيوية، وعدم إدراك الأطباء لقدرة البكتيريا الكبيرة على تطوير نفسها لمقاومة المضادات الحيوية، كما تدخلت علوم الهندسة الوراثية والمناعة والكيمياء الحيوية في هندسة بعض الكائنات وراثياً بحيث لا تؤثر فيها المضادات الحيوية، كما لا تؤثر فيها الطعوم أو اللقاحات التي تم تحضيرها بناء علي التركيب الجيني للكائنات الطفيلية المُمرِضة العادية . وكانت منظمة الصحة العالمية قد أصدرت مؤخراً تحذيراً من أن جميع الأمراض المُعدية تطور مناعة ضد المضادات الحيوية بصورة منتظمة. 


مخاوف حول التأثيرات الممكنة على الصحة الإنسانية والبيئة: 

إيريك دريكسلر Eric Drexler العالم الذي وضع أسس النانو تكنولوجي حذر من التطوير القوي جداَ والتقنيات الخطيرة، في كتابه Engines of Creation ،تصور دريكسلر بأن الجزيئات الذاتية الاستنساخ التي عمل بها الناس قد تتجنب سيطرتنا. ولو أن هذه النظرية أساءت إلى سمعة الباحثين في هذا الحقل على نحو واسع ،والعديد من المخاوف تبقى بخصوص تأثير النانو تكنولوجي على الصحة الإنسانية والبيئية بالإضافة إلى تأثير الصناعة الجديدة. يقلق النشطاء بأن العلم وتطوير النانو تكنولوجي يتقدمان سريعاَ ويستطيعان ابتكار الإجراءات التنظيمية المناسبة.